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Part 1 Re-Examination - 30 June 2016 

1. 

Write your solutions on your answer sheet, not here. In all cases show your work. 
Beware of unnecessary information in the problem statement. 

To avoid any possible confusion, 
state the equation numbers and figure numbers of equations and figures you use 

along with the text vou are using (BSLl. BSL2 or BSLK). 

I recently saw a soap bubble, about 7 mm in diameter, that was slowly settling 
downward in air at a velocity of about 5 mm a second. The properties of air are given 
below. The weight of the soap film around the air in the bubble gives it an average 
density a little greater than that of air. 
a. Based on this information, what is the average density of the bubble? (20 pts) 
b. The average density of the bubble is the result of 

a spherical water f i lm surrounding the air and the 
air inside. Water has density 1000 kg/m^. Based 
on your answer to part (a), how thick is the water 
film around the bubble, to give the average 
density you compute in part (a)? I f you did not 
finish part (a), show clearly how you would 
compute this from the average density. Don't 
spend too long on this part i f you don't get it. 
Also, don't worry i f the film diameter you 
calculate is small; soap films are very thin. (5 pts) 

(25 points total) 
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A fan and piping system is designed to draw air 
through the ceiling and out of a laboratory at a rate of 
0.05 m /̂s. There is a rounded constriction at the 
entrance to the pipe, two rounded 90°angles in the pipe, 
and lengths of pipe (20 cm diameter) as shown in the 
figure. Pressure at both the inlet and the outlet of the 
pipe is at 1 atm. Assume the same properties of air as 
in Problem 1, and assume air is incompressible (i.e., 
that its density is constant). The roughness of the pipe 
wall is about Vz mm in scale. What rate of work must 
the fan do on the air to maintain this flow, in Watts? 

Note that because air has such low density, you can neglect gravity in this 
problem. 
(40 points) 
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3. An engineer is attempting to measure tlie permeability of a cylindrical rock sample by 
pumping water through it. The sample is 30 cm long and 5 cm in diameter, as shown 
below. The sample is horizontal; the water flow rate is 6x10"' m /̂s (about 36 ml/min.) 
and the pressure difference is 2x10"̂  Pa. 

The engineer doesn't realize it, but the rock is cracked; all the flow is through the 
crack, not through the rock itself. Assume that the crack is a smooth rectangular sUt, 
5 cm wide, 30 cm long, with unknown gap width 2B, as shown. The flow rate and 
pressure difference are as given above. The properties of water ai'e given below. 
a. What is the gap width 2B of the fracture that would explain this flow rate at this 

pressure difference? Assume laminar flow. 
b. Is the assumption of laminar flow justified? Briefly justify your answer. 
(25 points) 

properties of water 
| l = 0.001 Pa s p = 1000 k g W 

4. A Bingham plastic, with properties p. To. Î o. fills the gap between two parallel 
smooth plates held at an angle (3 to the vertical. The top plate is moving downward (in 
the negative z direction in the coordinate system shown) with velocity (-V). The 
bottom plate is moving upward with velocity V. 

Attached to his exam are the pages from BSLl with the derivation for the falling-
film problem. What is the last equation in that derivation that can be appHed directly 
to this problem? 
(10 points) 
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Fig. 2.2-1. • Scliematic diagram of falling film experiment, illustming end ef-fects. In the 
region of length L tha velocity distribution is fully developed. 

Momentum 

distribution"\^*t^*^ 

Momentum 
out by flow 

Velocity 
distribution 

Direction 
of gravity 

Fi», 2 2--2 r-lov. of a viscous isothermal liquid film under the influence of gravity v îtli no 

rip^lS Slice of thickness A . overwhich momentum balance is made. The3/-ax,s .s po.ntmg 

outward from the plane of paper. 

now oi a !?aK!rcr: Püsri 3T 

for the A'elodty distribution. The ititegration of these two differential 
equations yields, respectively, the momentum flux and velocity distributions 
for the system. This information can then be used to calculate various other 
quantities, such as average velocity, maximttm velocity, volume rate of flow, 
pressure drop, and forces on boundaries. 

In the integrations mentioned above, several constants of integration 
appear, wMch are evaluated by the use of "boundary conditions," that is, 
statements of physical facts at specified values ofthe independent variable. 
The following are the most used boundary conditions: 

a. At solid-fluid interfaces the fluid velocity equals the velocity with which 
the surface itself is moving; that is, the fluid is assumed to chng to any solid 
surfaces with which it is in contact. 

b. At liquid-gas interfaces the momentum flux (hence the velocity gradient) 
in the liquid phase is very nearly zero and can be assumed to be zero in most 
calculations. 

c. At.Hquid-hquid interfaces the momentum flux perpendicular to the inter­
face, and the velocity, are continuous across the interface. (In the notation 
of §A.5, V and np -I- [n • T ] are continuous for planar interfaces). 

Al l three types of boundary conditions are encountered in the sections that 
follow. 

In this section we have endeavored to present some general rules for solving 
elementary viscous flow problems. We now proceed to illustrate the 
application of these rules to a number of simple flow systems. 

§2.7. F L O W OF A FALLING FILM 

As our first example, we consider the flow of a fluid along an inclined flat 
•surface, as shown in Fig. 2.2-1. Such films have been studied in connection 
with wetted-wall towers, evaporation and gas absorption experiments, and 
application of coatings to paper rolls. We consider the viscosity and density 
of the fluid to be constant. We focus our attention on a region of length X, 
sufificientiy far from the ends of the wall that the entrance and exit distur­
bances are not included in L, that is, in this region the velocity component v. 
does not depend on z. 

• We begin by setting up a z-niomentum balance over a system of thickness 
Ax, bounded by the planes z = 0 and z = L,and extending a distance Win 
the y-direction. (See Fig. 2.2-2.) The various components of the momentum 
balance are then 
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V-WX-TJUA. (2-2-2) 

iW^xvXpv;)U^o (2-2-3) 
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gravity force_ (LW^xXpg cos (}) (2.2-5) 
acting on flmcl ^ A J Ö 

Note that v/e always take the "ii'i" and "out" directions in the direction ofthe 
positive X- and z-ajces (in this problem these happen to coincide with, the 
direction of momentum transport). The notation \^+^^ means "evaluated at 
X + Ax." 

Wlien these terms are substituted into the momentiim balance of Eq. 2.1-1, 
we get 

LWrJ, - LWV,,U+A, -1 - WAx pvX^, 

- WAx pvX^L -1- LWAx pg cos ^ = 0 (2.2-6) 
Because is the sajne at z = 0 as it is at« = I , for each value of x, the third • 
and foui-tit terms just cancel one another. We now divide Eq. 2.2-6 by 
LW Ax and take Üie limit as Ax approaches zero: ^ 

liin f l ï ï ï k + M I l Z s i ) =pg-cosi3 (2.2-7) 

The quantity on the left side may be recognized as the definition- of the fest 
derivative of with respect to x. Therefore, Eq. 2,2-7 may be rewritten as 

•f-^r.. = P^cos^ (2.2-8)-
dx 

This is the differential equation for the momentum flux T^,,. I t may be 
integrated to give 

T^, = pgx cos H-C^ (2.2-9) 

The constant of integi-ation may be evaluated by maïdng iise of the boundary 
condition, at the liquid-gas interface (see §2.1): 

E.C. 1: at :t; = 0, r , , = 0 (2.2-10) , 
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Substifxrtion of this boundaiy condition into .Eq. 2.2-9 reveals that C = 0 
Hence the monientura-.flux distribution is ' - i • 

= PgX COS /5 (2.2-11) 
as shown in Fig. 2.2-2. 

^ I f the fluid is Newtonian, then we know that the momentum flux is related 
£0 the velocity gradient according to 

dx (2.2-12) 

Substitution of this expression for r, , into Eq. 2.2-11 gives the following 
differential equation for the velocity distribution: 

do. pg cos /3' 
dx ' \ (J, 

This equation is easily integrated to give 

2 ,̂ x^ -1- a 

(2.2-13) 

(2.2-14) 

The constant of integivation is evaluated by using the boundary condition 

B.C. 2: = 0 (2.2-15) 

Substitution of tliis boundary condition into Eq. 2.2-14 shows that C, = 
{pg cos ^I2fi)ö^. Therefore, the velocity distribution is 

pg 5^ cos) 

I f , L Ad). (2.2-16) 

Hence the velocity profile is parabolic. (See Fig. 2.2-2.) 
Oncfe Üie velocity profile has been found, a number of qua,ntities may be 

calculated: 

(i) The maximum velocity v,^^^^^ is clearly the velocity at a; = 0; that is 

2;, 
(2.2-17) 


