AESB2320, 2015-16
Part 1 Re-Examination - 30 June 2016

Write your solutions on your answer sheet, not here. In all cases show your work.
Beware of unnecessary information in the problem statement.

To avoid any possible confusion,
state the equation numbers and figure numbers of equations and figares you use
along with the text you are using (BSL.1, BSL2 or BSLK).

1. Irecently saw a soap bubble, about 7 mm in diameter, that was slowly settling
downward in air at a velocity of about 5 mm a second. The properties of air are given
below. The weight of the soap film around the air in the bubble gives it an average
density a little greater than that of air.

a. Based on this information, what is the average density of the bubble? (20 pts)
b. The average density of the bubble is the result of
a spherical water film surrounding the air and the

air inside. Water has density 1000 kg/m®. Based , air
on your answer to part (a), how thick is the water verv thin
film around the bubble, to give the average WatZ, film

density you compute in part (a)? If you did not
finish part (a), show clearly how you would
compute this from the average density. Don't
spend too long on this part if you don't get it.
Also, don't worry if the film diameter you
~ calculate is small; soap films are very thin. (5 pts)
(25 points total)

properties of air
w=175x10"Pas p = 1.26kg/m’

2. A fan and piping system is designed to draw air
through the ceiling and out of a laboratory at a rate of

0.05 m>/s. There is a rounded constriction at the rounded 90°
cornhers

entrance to the pipe, two rounded 90°angles in the pipe,
and lengths of pipe (20 cm diameter) as shown in the
figure. Pressure at both the inlet and the outlet of the
pipeis at 1 atm. Assume the same properties of air as

in Problem 1, and assume air is incompressible (i.e.,

. . . pump .
that its density is constant). The roughness of the pipe ounded
wall is about ¥2 mm in scale. What rate of work must entrance

the fan do on the air to maintain this flow, in Watts?
Note that because air has such low density, you can neglect gravity in this

problem.
(40 points)




3. Anengineer is attempting to measure the permeability of a cylindrical rock sample by
pumping water through it. The sample is 30 cm long and 5 cm in diameter, as shown
below. The sample is horizontal; the water flow rate is 6x107 m%/s (about 36 ml/min.)
and the pressure difference is 2x10* Pa.

The engineer doesn't realize it, but the rock is cracked; all the flow is through the
crack, not through the rock itself. Assume that the crack is a smooth rectangular slit,
5 cm wide, 30 cm long, with unknown gap width 2B, as shown. The flow rate and
pressure difference are as given above. The properties of water are given below.

a. Whatis the gap width 2B of the fracture that would explain this flow rate at this
pressure difference? Assume laminar flow.

b. Is the assumption of laminar flow justified? Brieﬂy justify your answer.
(25 points)
properties of water

(L =10.001 Pas p = 1000 kg/m’

Geometry of slit
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4. A Bingham plastic, with properties p, To, o, fills the gap between two parallel
smooth plates held at an angle 3 to the vertical. The top plate is moving downward (in
the negative z direction in the coordinate system shown) with velocity (-V). The
bottom plate is moving upward with velocity V.

Attached to his exam are the pages from BSL1 with the derivation for the falling-
film problem. What is the /ast equation in that derivation that can be applied directly

to this problem?
(10 points)
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Fig. 2.2=1. - Schematic diagram of falling film experiment, illustrating end effects, In the
region of length L the velocity distribution is fully developed.
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Fig. 2.2-2. Flow of a viscous isothermal liquid film under the influence of gra}/i%y wi.th o
rip(;ling. Stice of thickness A over which momentum balance is made. They-axis is pointing
outward from the plane of paper.

Flow of a Palling Flw kv
for the velocity distribntion. The iniegraiion of these two differeniial
equations yields, respectively, the momentum flux and velocity distributions
for the system. This information can then be used to calculate various other
quantities, such as average velocity, maximum velocity, volume rate of flow,
pressure drop, and forces on boundaries.

In the integrations mentioned above, several constants of integration
appear, which are evaluated by the use of “boundary conditions,” that is,
statements of physical facts at specified values of the independent variable.
The following are the most used boundary conditions:

a. At solid-fivid interfaces the fluid velocity equals the velocity with which
the surface itself is moving; that is, the fluid is assumed to cling to any solid
surfaces with which it is in contact.

b. Atliquid-gas interfaces the momentum flux (hence the velocity gradient)
in the liquid phase is very nearly zero and can be assumed to be zero in most
calculations.

c. Atliquid-liquid interfaces the momentum flux perpendicular to the inter-
face, and the velocity, are continuous across the interface. (In the notation
of §A.5, » and np + [ - =] are continuous for planar interfaces).

All thrze types of boundary conditions are encountered in the sections that
follow.

In this section we have endeavored to present some general rules for solving
elementary viscous flow problems. We now proceed to illustrate the
application of these rules to 2 number of simple flow systems.

§2.2 FLOW OF A FALLING FILM

As our first example, we consider the flow of a fluid alon g an inclined flat

‘surface, as shown in Fig. 2.2-1. Such films have been studied in connection

with wetted-wall towers, evaporation and gas absorption experiments, and
application of coatings to paper rolls. We consider the viscosity and density
of the fluid to be constant. We focus our attention on a region of length L,
sufliciently far from the ends of the wall that the entrance and exit distur-
bances are not included in L, that is, in this region the velocity component v,
does not depend on z.

" We begin by setting up 2 z-momentum balance over a system of thickness
Az, bounded by the planes z = 0 and z == L, and extending a distance W in

the y-direction. (See Fig. 2.2-2.) The various components of the momentum
balance are then

rate of z-

momentum in
2.2~
across surface (L) ozl (2.2-1)

atz
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gravity force (LW Az)(pg cos f) (2.2-5)

acting on fluid
Note that we always take the “in”” and “out” directions in the direction of the
positive @- and z-axes (in this problem these happen to coincide with the
direction of momentum transport). The notation |, a, means “evalvated at
x - Az :

‘When these terms are substituted into the momentum balance of Eq. 2.1-1,
we get

LVVTmzlw - LWTa:zl:u+Aw + WAz pvz2[x=0
— WAz pv2,_p - LWAz pgcos p =0 (2.2-6)

Because v, is the same at z = 0 as it is at z = L for each value of =, the thitd -

and fourth terms just cancel one another. We now divide Eq. 2.2-6 by
LW Az and talke the limit as Az approaches zero:

Alim'o (T———*—MIMA/;; T”“[‘”> = pgcos f @.2-7)
= 2

The quantity on the left side may be recognized as the definition: of the first
derivative of ,, with respect to x. Therefore, Bq. 2.2-7 may be rewritten as

4 Ty = pgcos f8 Q.2-8)
da
This is the differential equation for the momentur flux 7. It may be
integrated to give
Ty = pgE COS § - Cy 2.2-9)
The constant of integration may be evaluated by making use of the boundary
condition at the liquid-gas interface (see §2.1):

B.C 1: at x=0, 71,=0 (2.2-10)
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- Substitution of this boundary condition into &
Henge the momentum-flux disicibution is

Tax == pg% COS f3 (2.2-11)
as shown in Fig, 2.2-2.

) If the 'fluiq is Newtonian, then we know that the momentum fl
io the velocity gradient according to

q- 2.2-9 reveals that ¢, = 0.

ux is related

o,

Taz = —

= (2.2-12)

Substitution of this expression for = int i
k t . . 1nto Eq. 2.2-11 gives the followi
differential equation for the velocity distributiocix: g e

o _(peeosi),

T p (2.2-13)
This equation is easily integrated to give
— _(pgcos By ,
v, (———2#’ )x + C, (2.2-14)

The constant of integration is evaluated by using the boundary condition

B.C. 2: at = g, v, =0 . (2.2-15)

Substitution of this boundary condition into Eq. 2.2~
(pg cos Bl21)8%. Therefore, the velocity distribution is

b= fﬁ%ﬁg [1 —@ 2:| | (2.2-16)

14 shows that C, =

Hence the velocity profile is parabolic. (See Fig. 2.2-2.)
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() The maximum velocity Vzmax 18 clearly the velocity at @ = 0; that is

" c
O = 289008 B
2

(2.2-17)




